

HYDROXYGRINDELANE DERIVATIVES BY MICROBIAL TRANSFORMATION

JOSEPH J. HOFFMANN, SHIVANAND D. JOLAD,* ROBERT B. BATES† and FERNANDO A. CAMOU†

University of Arizona, Office of Arid Lands Studies, Bioresources Research Facility, 250 E. Valencia Road, Tucson, AZ 85706, U.S.A.; *University of Arizona, College of Pharmacy, Tucson, AZ 85721, U.S.A.; †University of Arizona, Department of Chemistry, Tucson, AZ 85721, U.S.A.

(Received 7 December 1987)

Key Word Index—*Aspergillus niger*; *Penicillium brevicompactum*; biotransformation; methyl 3 α -hydroxy-7 α ,8 α -epoxygrindelate; methyl 3 α -hydroxy-6,8(17)-dehydrogrindelate; methyl 3 α -hydroxygrindelate.

Abstract—The microbial transformation of methyl 7 α ,8 α -epoxygrindelate and 6,8(17)-dehydrogrindelic acid by cultures of *Aspergillus niger* and *Penicillium brevicompactum* produced the corresponding 3 α -hydroxygrindelanes.

INTRODUCTION

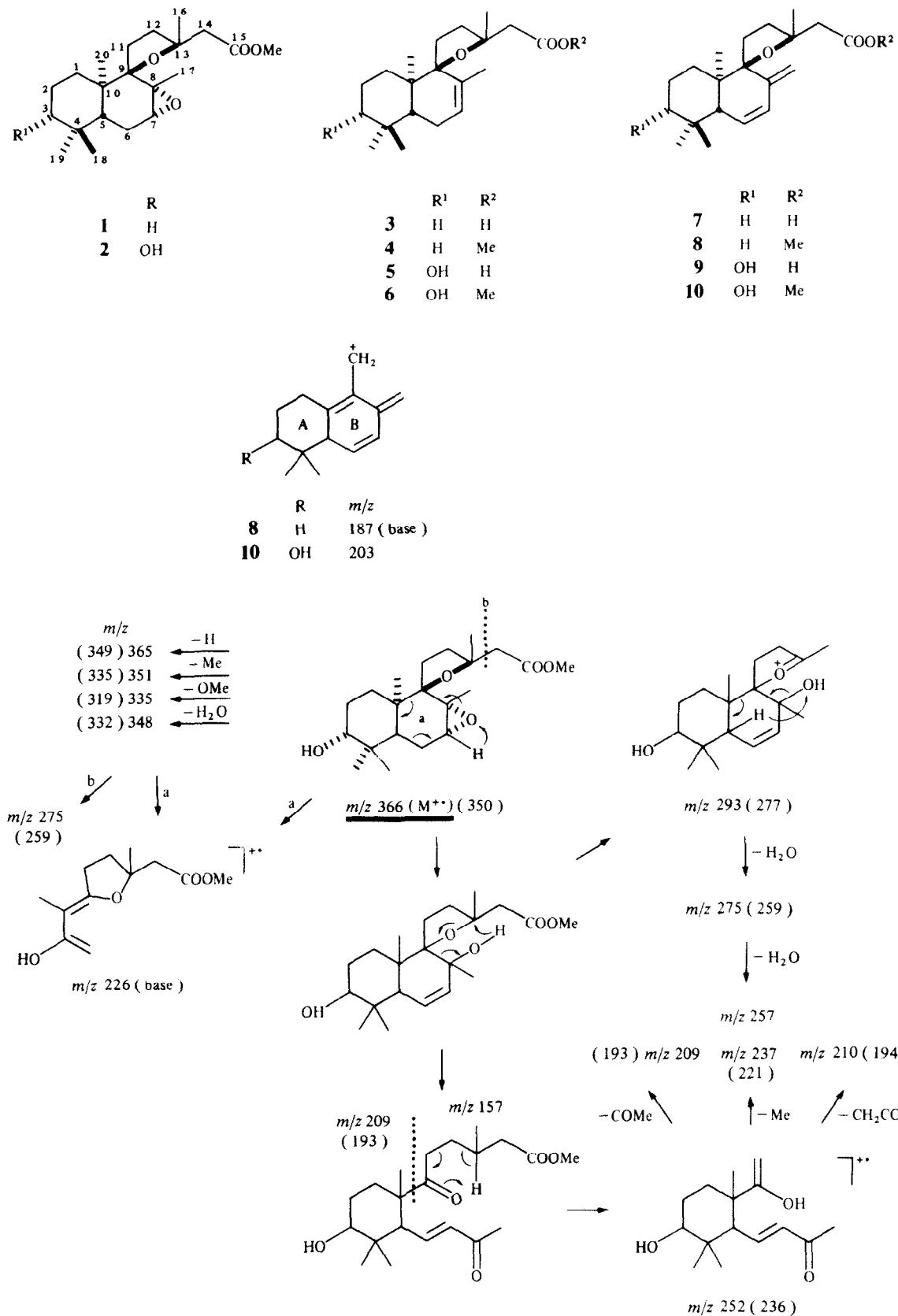
In continuation of our effort to produce hydroxygrindelanes with potential insecticidal activity, we have subjected methyl 7 α ,8 α -epoxygrindelate and 6,8(17)-dehydrogrindelic acid to microbial transformation using *Aspergillus niger* X-172 and *Penicillium brevicompactum* 10418, respectively.

RESULTS AND DISCUSSION

We reported earlier [1] the microbial transformation of grindelic acid (3) into 3 α -hydroxygrindelic acid (5) in good yield. We now report that methyl 7 α ,8 α -epoxygrindelate (1) and 6,8(17)-dehydrogrindelic acid (7) are transformed analogously into methyl 3 α -hydroxy-7 α ,8 α -epoxygrindelate (2) and 3 α -hydroxy-6,17-dehydrogrindelic acid (9), respectively.

In the EIMS, 2 displayed an M^+ peak at m/z 366 (m/z 366.2400 by HRMS: $C_{21}H_{34}O_5$ requires 366.2406), 16 mass units higher than that of 1, and a mass spectral pattern very similar to that of 1. This increment in the M^+ of 16 mu together with the presence of minor but diagnostic peaks at m/z 348 [$M - H_2O$]⁺, 293 [$M - CH_2COOMe$]⁺, 275 [m/z 293 - H_2O]⁺, 257 [m/z 293 - 2 H_2O]⁺, and a strong hydroxyl band (3450 cm^{-1}) in the IR (neat) spectrum of 2 clearly suggested that 1 had been hydroxylated. Since the m/z 226 species, which occurs as the base peak in 1 and 2, includes the THF and B ring portions but lacks the A ring (Scheme 1), the hydroxyl group appeared to be in ring A. Supporting evidence came from a peak of appreciable intensity at m/z 252 (not observed in 1), shifted from m/z 236 in 1 as required by the substitution of a hydroxyl group in ring A of 2: its possible formulation is outlined in Scheme 1 (composition verified by HRMS). Since the peaks in the low mass region (below m/z 226) of the EIMS of 1 and 2 occur with same masses, and the same microorganism (*A. niger*) was used, the C-3 locus was favoured for the hydroxyl function in 2.

The ^1H (Table 1) and the ^{13}C (Table 2) NMR spectra confirmed the hydroxyl group in 2 to be in the 3 position,


and showed it to be equatorial. The C-3 proton absorbs like that in 5 [1], and must be axial to have a coupling constant as large as 11.0 Hz. Compound 1 matches the NMR spectra of 2 except for the A ring peaks, which more closely match those of 5.

The microbial transformation of 7 into its corresponding 3 α -hydroxy derivative (9) was done on a mixture containing 75% of 3 and 25% of 7 (GC); we did not separate these substances from one another since they have virtually identical R_f values on the chromatographic solvent systems used. Neither the biotransformation products 5 and 9 nor their corresponding methyl ester derivatives 6 and 10 were separated from one another for the same reason but their structures were evident from the ^1H NMR spectra of the 3:1 mixtures (Table 1) and received support from the EIMS of the mixture of 6 and 10. Like diene 8, the mixture exhibited little fragmentation but the peak at m/z 277 (loss of $\text{CH}_2\text{CO}_2\text{Me}$) and a retro-Diels-Alder fragment at m/z 210 [base, corresponding to m/z 196 (base) in 5], both derived from M^+ (m/z 350, not observed) of 6 and diagnostic peaks at m/z 348 (M^+ , 3.2%) and 203 (19.4%), both shifted from m/z 332 (M^+) and 187 (base) in 8, clearly suggested that both 6 and 10 were hydroxylated. Since the m/z 187 ion (Fig. 1) in 8 includes the A and B rings, the hydroxyl group in 10 must be in ring A.

EXPERIMENTAL

See references [2] for the analytical procedures, [1] for the description of microorganism and fermentation procedure and [3] for the GC analysis. A sample of methyl 7 α ,8 α -epoxygrindelate (1) and of grindelic acid (3)-6,8(17)-dehydrogrindelic acid (7) mixture (3:1) were obtained by previously published procedure [4].

Methyl 3 α -hydroxy-7 α ,8 α -epoxygrindelate (2). The *A. niger* fermentation product (100 mg) was separated into Et_2O soluble and insoluble fractions. From the Et_2O -soluble fr. (78 mg), 2

Scheme 1. Diagnostic EIMS fragments of **2**. Figures in parentheses represent analogous ions in the EIMS of **1**.

Table 2. ^{13}C NMR spectral data for compounds **1**, **2** and **5** (22.63 MHz, CDCl_3 , with TMS as int. standard)

C	1[6]	2	5[1]
1	31.8	29.7	30.8
2	18.3	27.2	27.0
3	41.7	78.1	78.5
4	33.1	38.6	38.8
5	37.2	37.2	42.3
6	22.9	22.5	23.8
7	61.5	61.9	128.4
8	59.0	59.0	133.2
9	88.3	88.1	92.1
10	39.8	39.6	40.5
11	29.1	29.2	27.7
12	37.5	37.4	39.2
13	81.4	81.5	81.2
14	47.1	47.0	47.4
15	171.9	171.8	172.4
16	26.7	27.2	26.8
17	23.1	22.9	21.0
18	32.5	27.2	27.6
19	22.5	15.4	15.1
20	16.5	16.6	16.8
OMe	51.2	51.3	—

(40 mg, single spot by TLC) was isolated by PLC [*n*-hexane-EtOAc-AcOH (20:20:3), single development]. Its IR (text), ^1H NMR (Table 1), ^{13}C NMR (Table 2) and mass (Scheme-1) spectra were in accord with the structure shown.

Methyl 3α -hydroxy-6,8(17)-dehydrogrindelate (**10**) and methyl 3α -hydroxy-grindelate (**6**). The *P. brevicompactum* fermentation product (240 mg) was extracted with Et_2O and filtered. From the Et_2O -soluble filtrate (185 mg), the major spot (65.8 mg) was isolated by PLC [petrol- Et_2O -AcOH (5:5:1), single development] and methylated [5]. The methylated product (53 mg), when submitted to PLC [petrol- Et_2O - EtOAc (15:2:8), two developments], gave a TLC single spot fr (24.3 mg), shown by ^1H NMR to be a mixture of **6** (70%) and **10** (30%). Its IR (text), ^1H NMR (Table 1) and mass (text) spectra were in accord with the structures shown.

Acknowledgements—We wish to express our sincere gratitude to Dr J. P. N. Rosazza for his invaluable assistance and recommendations in this project as well as starter cultures for the microorganisms used. Our appreciation is also extended to L. K. Hutter for running the GC throughout the course of this project.

REFERENCES

1. Hoffmann, J., Punnapayak, H., Jolad, S., Bates, R. and Camou, F. (1988) *J. Nat. Prod.* **51**, 125.
2. Jolad, S., Hoffmann, J., Schram, K., Cole, J., Tempesta, M. and Bates, R. (1981) *J. Org. Chem.* **46**, 4267.
3. Timmermann, B., McLaughlin, S. and Hoffmann, J. (1987) *Biochem. Syst. Ecol.* **15**, 401.
4. Timmermann, B., Luzbetak, D., Hoffmann, J., Jolad, S., Schram, K., Klenck, R. and Bates, R. (1983) *Phytochemistry* **22**, 523.
5. Timmermann, B., Hoffmann, J., Jolad, S., Schram, K., Klenck, R. and Bates, R. (1982) *J. Org. Chem.* **47**, 4114.
6. Sierra, M., Colombo, M., Zudenigo, M. and Ruveda, E. (1984) *Phytochemistry* **23**, 1685.

*Coupling constants in Hz in parenthesis.

¹⁷ May be interchanged

May be overlooked.
Obscured by peaks due to an impurity.